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1. INTRODUCTION

In many microgravity experiments involving fluid

flow, density variations arise frequently due to, for

example, temperature or concentration gradients. These

variations couple to time-dependent accelerations (9-

jitter) that are unavoidably present aboard spacecraft;

this coupling can significantly influence outcomes in

microgravity experiments. Ground-based experiments

can provide insight into these effects that complements
both theoretical studies and space-based experiments.

Convective flow is one class of behavior that can

arise from j-jitter effects. The Rayleigh-Benard system

is an important model for understanding thermal con-

vection; thus, studies of this problem in the presence of

acceleration modulations provide insight into the nature

of (j-jitter induced flow and of the effects of modulation

and noise on non-equilibrium pattern formation.

In the following, we describe experiments on Rayleigh-

Benard convection subjected to sinusoidal acceleration

modulation. Theoretical investigations of this problem

have been conducted by several workers [1-3]; by com-

parison there appears to be little previous experimental
work [3].

2. DESCRIPTION OF EXPERIMENT

CO_, gas, compressed at 3.10 El0 e' PA, is confined

to a horizontal layer of depth d = 0.064 cm by a 0.5

cm thick aluminum mirror and a 2.54 cm thick sapphire

window (Fig. 1). The thickness of the gas layer varies

by approximately 1 t_m, as measured inteferometrically.

A cylindrical paper sidewall of inner diameter 2, d =

4.13 cm bounds the gas layer laterally.
The convective flow is controlled by applying a

temperature difference AT across the layer and by

oscillating the layer vertically with a sinusoidaI accel-

eration of frequency f and amplitude a. AT, which

typically ranges from 20 to 30 °C, is applied uniformly

by heating the mirror and cooling the window. The

temperature of the bottom plate fluctuates by less than
0.003 °C, while the window, whose temperature is fixed

at 22.4 °C, is regulated to 0.01 °C. The dimensionless

number that characterizes the heating is the Rayleigh

number R = _ with kinematic viscosity u, thermal

diffusivity _, temperature coefficient of volumetric ex-

pansion _ and the earth's gravitational acceleration 9.
We describe our results in terms of a reduced Rayleigh

+ acos tot )

Figure 1: C,eometry of Rayleigh-Brnard conveclion suh-

jected to lime periodic acceleration modulalions.

number, - R--/q'£ where Ro = 170,q is the Rayleigh
Rt.,

number at the onset of convection in the absence of

shaking. Time dependent accelerations are applied by

a hydraulic shaker table that vertically vibrates the ex-

periment. In typical experiments, a ranges from 1 to 8
g and 8 Hz <= f <= 21 Hz; f is controlled to within
0.01 Hz and. is maintained to within 5%. The vertical

diffusion time d_ (._ 1 S) is used to obtain the nondimen-

sional frequency., = . ; me oscillation amplitude is

conveniently described in terms of the nondimensional

displacement 6 = _. The Prandtl number is fixed at
0.9 in the experiments.

The convection flow is visualized by the shadow-

graph technique. Dynamics that occur over long time
scales (>> 2.-_) are captured using a standard NTSC
video camera interfaced to a frame grabber. The camera

is shuttered by a ferroelectric liquid crystal polarizer that

is synchronized with the drive signal for the shaker table.

Fast ( < _) convective dynamics can be captured using

a high speed (800 frames per second) video camera.
In all cases, the shadowgraph images are digitized and

enhanced to improve the signal-to-noise using standard

image processing techniques.

3. RESULTS

A wide variety of convective flow states are observed

for fixed _., (Fig. 2). Each experimental run is performed

by setting _ to a fixed value and slowly ramping up and

then down in/i. A range of_ is probed by repeating this

procedure at different values of _. Each experimental

run begins with ,_ = 0 where the convective flow is in
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Figure 2: Phase diagram of convective flows is obtained

by plotting tile reduced Rayleigh number e as a ftmction

of displacement amplitude 5 with drive frequency ,,,., =

80. Data is obtained hy fixing e and varying ,5; increas-

ing ,.f is indicated by closed circles and decreasing a is

indicated 1)3"closed diamonds. The botmdaries between

ttow stales (dotted lines) are approximate and are drawn

ira to gaff&, the eye.

the disordered, time dependent spiral defect chaos [4]

for the range of _ described here.

As ,S increases for low values of,, the system passes

through a sequence of increasingly ordered convective

flows and returns to the conduction state (Figs. 2 and 3

). Initially, the number of spiral defects decrease and the

convection pattern exhibits either a single spiral (Fig.

3(b)) or a pattern of straight rolls (Fig. 3(c)). Upon

further increases of a, hexagonal patterns are observed to

arise for a narrow range of a (Fig. 3(d), but not shown on

the phase diagram Fig. 2); hexagons disappear and the

conduction state returns for a sufficiently large. In this

regime, all convective patterns are similar in appearance

to those flows that arise in standard Rayleigh-Benard

convection (the "no-shake" case) with the exception

that in the presence of shaking, all convective patterns

in this range of parameter are observed to oscillate

synchronously with the drive frequency _.,. (Patterns

near onset in standard Rayleigh-Benard convection are

stationary.).

The conduction state becomes unstable to new con-

vective patterns with further increases in a for low values

of epsilon (Fig. 4). These new convective patterns are

observed to oscillate at _.,/2, the subharmonic of the drive

frequency. The subharmonic flows initially appear as

Figure 3: Transitions between convective flows with

time dependence synchronous with the drive frequency

_.', The convective flow exhibits spiral defect chaos in

the ahsence of modulation, as shown in (a) for c =
1.13. The convective flow becomes less disordered as

the displacement amplitude ?; of the modulation is in-

creased, giving ribc to patterns in Ihe form of (b) spir-

als (,5 = .1.56E10 -4, ,,a = 79, ¢ = 2.06), (c) slripes

(5" = 1.5,_E10 -4, _, = 1,_1, ( = 2.26), or (d} hexagons

(t_ = 1.70El0 -4, ,.,., = IT,R, c = 2..t.t). All cases of mod-

ulated convect.ion (b-d) exhibi_ global rotation of the

pattern. For these values of ( and ,,:, the syslem returns

to the conduction state with further increases ira a.

Figure 4: Convective flows with temporal response at

the suhharmonic 7-" The sttbharmonie patterns appear

as (a) stripes (6 = 4.82/7.10 -4, w = ,_0, ¢ = 1.92), with

wavelengths substantially smaller than that of _mmodu-

lated or s.s'nchronous convection (Fig. 1 ). Upon fiuO_er

increases in ?i, the stripes become wavy (c). In both

cases, the patterns exhibi! global rotation.
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nearly straight rolls with a wavelength that is signi-

ficantly smaller than the synchronous roll patterns(Fig.

4(a)). With further increases in _ the subharmonic rolls

become wavy along the roll direction; this waviness is

accompanied by an additional frequency.

A global rotation to the pattern is observed for

both synchronous and subharmonic ordered patterns.
The direction of rotation depends on initial conditions;

both clockwise and counterclockwise pattern rotations

have been observed for all patterns. The rotation rate

is observed to slow as a approaches values near the

transition to conduction.

Some aspects of these transitions can be understood

drawing an analogy with the motion of a damped simple

pendulum whose pivot is subjected to vertical sinusoidal

oscillation [1]. In the absence of shaking, an inverted

pendulum that is unstably balanced above the pivot

is akin to a fluid layer where the conduction state is

destabilized by heating from below. It is known that

an inverted pendulum may be stabilized if the pivot is

subjected to oscillations; the circumstances under which

this may arise can be determined examining the stability

of the equation of motion, the Mathieu equation. In

the same way, it may be expected that oscillations may
stabilize the conduction state in the Rayleigh-Benard

problem. This analogy can be made quantitative; an

approximate linear stability of the fluid layer can be

performed by mapping equations of motion for the fluid

layer to the Mathieu equation [ 1]. Both subharmonic and
fundamental modes that are observed in the experiment

are predicted with approximate values for the onset of
convection and the wavenumbers that are consistent

with the experiments.

For sufficiently large values of ,, there is no range
of _ where the conduction state exists and the funda-

mental mode increases for low values of epsilon, the

system can pass directly from the fundamental mode
to the subharmonic mode of convection (Fig. 5.). As

is increased, the sequence of fundamental modes are
similar to those observed at smaller _. For ,i suffi-

ciently large, the subharmonic modes first appear in

locallized regions--typically trapped within defects of
the fundamental pattern. These subharmonic can be

trapped because they have a signi ficantly smaller length
scale than the fundamental mode; moreover, the subhar-

monics are advected with the defects in the fundamental

mode and appear and disappear as the defects in the

fundamental pattern appear and disappear (Fig. 5 (a)).
With further increases in 8, the subharmonic pattern

spreads throughout the convection cell; both patterns

are seen to coexist (Fig. 5(b)). The patterns coexist

Figure 5: Competilion l_e(ween synchronous and
sld_harmonic palterns. The std_harmonic stripes first

appear as locallized patches trapped within defects of

the syn(:hronous paltern (a) (a = ,1.71EIO -4, ,_' = ,_0,

e = 2.27). With small changes in parameter, both
subharmonic and synchl'oFIolls patterns coexist over

most of the apparatus (b).

for only a small range of a with further increases in S,

subharmonic patterns of straight rolls appear.

4. CONCLUSIONS

Our experiments on Rayleigh-Benard convection

with periodic acceleration modulation are permitting

the study of flows that arise from two different pattern

forming mechanisms. We observe flows that respond

synchronously with the drive frequency _,; the patterns

observed in this regime have wavenumbers and mor-

phologies that are similar to convection in the absence of
modulation, where the wavenumber selection is known

to be directly related to the geometry. We also observe
flows that respond at the drive frequency's subharmonic

and have wavenumbers that are substantially smaller
than those for the fundamental modes; thc temporal

behavior of the subharmonic patterns is akin to those

observed in systems subject to parametric instability

(e.g. surface waves in Faraday experiments) where
wavenumbers are selected through a dispersion relation.

Our experimental results for the onset of convection ap-

pear to be in agreement with preliminary computations

of the approximate linear stability [ 1] of the conduction
state; we are currently refining the computations for the

exact problem [2].

To make closer connection to the effects of q-jitterin

a microgravity environment, we will extend our studies
to include stochastic modulations (noise). It is well-

known that acceleration fluctuations aboard spacecraft
exhibit both deterministic and stochastic features [5].

Our experiments on Rayleigh-Benard convection with
acceleration modulation provide a general setting to
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understandtheeffectsof noiseonconvectiveflows.
Specifically,recenttheoreticalworksuggeststhatsmall
amountsof noisecanalterqualitativelytransitionsto
oscillatorystates[6].Wewill investigatethisquestion
infutureexperiments.
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